\[ y = {\alpha} + {\beta} x + \epsilon\] \[ \epsilon = N(0, \sigma) \]
\[ y = {\alpha} + \sum{\beta_i x_i} + \epsilon\] \[ \epsilon = N(0, \sigma) \]
sex | weight | height | repwt | repht | |
---|---|---|---|---|---|
1 | M | 77 | 182 | 77 | 180 |
2 | F | 58 | 161 | 51 | 159 |
3 | F | 53 | 161 | 54 | 158 |
4 | M | 68 | 177 | 70 | 175 |
5 | F | 59 | 157 | 59 | 155 |
194 | F | 51 | 156 | 51 | 158 |
195 | F | 62 | 164 | 61 | 161 |
196 | M | 74 | 175 | 71 | 175 |
197 | M | 83 | 180 | 80 | 180 |
199 | M | 90 | 181 | 91 | 178 |
200 | M | 79 | 177 | 81 | 178 |
Variável | Descrição | Tipo |
---|---|---|
sex | sexo | categórica dois níveis (M, F) |
weight | peso | contínua (kg) |
height | altura | contínua (cm) |
repwt | peso reportado | contínua (kg) |
repht | altura reportada | contínua (cm) |
##
## Call:
## lm(formula = weight ~ height, data = Davis)
##
## Residuals:
## Min 1Q Median 3Q Max
## -19.928 -5.406 -0.651 4.891 42.641
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -130.84185 12.30184 -10.64 <2e-16 ***
## height 1.15112 0.07193 16.00 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.635 on 178 degrees of freedom
## Multiple R-squared: 0.5899, Adjusted R-squared: 0.5876
## F-statistic: 256.1 on 1 and 178 DF, p-value: < 2.2e-16
## Analysis of Variance Table
##
## Response: weight
## Df Sum Sq Mean Sq F value Pr(>F)
## height 1 19095 19095.0 256.08 < 2.2e-16 ***
## Residuals 178 13273 74.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] 32367.75
## [1] 13272.71
## Analysis of Variance Table
##
## Model 1: weight ~ 1
## Model 2: weight ~ height
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 179 32368
## 2 178 13273 1 19095 256.08 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\(p_{valor} = 2.2e-16\)
\(p_{valor} = 2.2 * 10^{-16}\)
\(r^2 = 0.587\)
lm(weight ~ height + sex, data = Davis)
sexo: dummy (mulher = 0, homem = 1)
##
## Call:
## lm(formula = weight ~ height + sex, data = Davis)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20.302 -4.808 -0.335 5.239 41.366
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -80.2107 16.8415 -4.763 3.96e-06 ***
## height 0.8341 0.1021 8.169 5.71e-14 ***
## sexM 7.7070 1.8345 4.201 4.20e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.258 on 177 degrees of freedom
## Multiple R-squared: 0.6271, Adjusted R-squared: 0.6229
## F-statistic: 148.8 on 2 and 177 DF, p-value: < 2.2e-16
## (Intercept) height sexM
## -80.2107328 0.8340964 7.7070166
\[w_f = \hat{\alpha}+ \hat{\beta_s} * sex + \hat{\beta_h} * height\]
\[w_f = \hat{\alpha} + \hat{\beta_h} * height\]
\[w_f = -80.2 + 0.83 * height\]
\[w_m = \hat{\alpha} + \hat{\beta_s}* sex + \hat{\beta} * height\]
\[w_m = \hat{\alpha}+ \hat{\beta_s} + \hat{\beta_h} * height\]
\[w_m = -72.5 + 0.83 * height\]
lmdavisfull <- lm(weight ~ height + sex + sex:height, data = Davis)
#lmdavisfull <- lm(weight ~ height + sex*height, data=Davis)
##
## Call:
## lm(formula = weight ~ height + sex + sex:height, data = Davis)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20.990 -4.548 -0.926 4.821 41.023
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -45.7988 24.8453 -1.843 0.0670 .
## height 0.6252 0.1507 4.148 5.22e-05 ***
## sexM -57.4326 34.8293 -1.649 0.1009
## height:sexM 0.3815 0.2037 1.873 0.0628 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.2 on 176 degrees of freedom
## Multiple R-squared: 0.6344, Adjusted R-squared: 0.6282
## F-statistic: 101.8 on 3 and 176 DF, p-value: < 2.2e-16
## (Intercept) height sexM height:sexM
## -45.7988220 0.6252035 -57.4326307 0.3815088
\[w = \hat{\alpha}+ \hat{\beta_s} * sex + \hat{\beta_h} * height + \hat{\beta}_{s:h} * sex* height\] \[w_f = \hat{\alpha} + \hat{\beta_h} * height\] \[w_f = -45.80 + 0.62 * height\]
\[w = \hat{\alpha} + \hat{\beta_s}* sex + \hat{\beta_h} * height + \hat{\beta}_{h:s} * sex * height \] \[w_h = \hat{\alpha}+ \hat{\beta_s} + (\hat{\beta_h} + \hat{\beta}_{h:s}) * height\] \[w_h = -103.23 + 1.01 * height\]
\[w = \hat{\alpha}+ \hat{\beta_s} sex + \hat{\beta_h} height + \hat{\beta}_{s:h} sex* height\]
\[sex = 0\]
## (Intercept) height sexM height:sexM
## -45.7988220 0.6252035 -57.4326307 0.3815088
\[w = \hat{\alpha} + \hat{\beta_h} height \]
## [1] 54.85893
\[w = \hat{\alpha}+ \hat{\beta}_s sex + \hat{\beta}_h height + \hat{\beta}_{s:h} sex* height\] \[sex = 1 \]
## (Intercept) height sexM height:sexM
## -45.7988220 0.6252035 -57.4326307 0.3815088
\[w = \hat{\alpha}+ \hat{\beta}_s + \hat{\beta}_h * height + \hat{\beta}_{s:h} * height\]
\[w = \hat{\alpha} + \hat{\beta}_s + (\hat{\beta}_h + \hat{\beta}_{s:h}) * height \]
## [1] 79.892
## sex weight height
## 1 M 77 182
## 2 F 58 161
## (Intercept) height sexM height:sexM
## 1 1 182 1 182
## 2 1 161 0 0
## (Intercept) height sexM height:sexM
## -45.7988220 0.6252035 -57.4326307 0.3815088
## [,1]
## 1 79.99018
## 2 54.85893
Modelos aninhados: o mais simples está contido no mais complexo.
Razão da Variância
Distância ao modelo saturado.
\[ D = 2*(LL_1 - LL_0)\]
Baseado no cálculo da verossimilhança, proporcional à probabilidade da realização dos dados e penalizado pelo número de parâmetros.
Distância ao modelo verdadeiro
\[ AIC = -2LL + 2k \]
Atualização da probabilidade posteriori, baseado em uma probabilidade priori
\[P(H|dados) \sim L(dados| \theta) * P(prior)\]
Critério para a tomada de decisão (Variância)
* retenha o modelo mais simples
* continue simplificando
* retenha o modelo complexo
* modelo MINÍMO ADEQUADO
##
## Call:
## lm(formula = weight ~ height + sex + sex:height, data = Davis)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20.990 -4.548 -0.926 4.821 41.023
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -45.7988 24.8453 -1.843 0.0670 .
## height 0.6252 0.1507 4.148 5.22e-05 ***
## sexM -57.4326 34.8293 -1.649 0.1009
## height:sexM 0.3815 0.2037 1.873 0.0628 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.2 on 176 degrees of freedom
## Multiple R-squared: 0.6344, Adjusted R-squared: 0.6282
## F-statistic: 101.8 on 3 and 176 DF, p-value: < 2.2e-16
weight ~ height + sex + sex:height
weight ~ height + sex
## Analysis of Variance Table
##
## Model 1: weight ~ height + sex + sex:height
## Model 2: weight ~ height + sex
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 176 11833
## 2 177 12069 -1 -235.82 3.5075 0.06275 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
weight ~ height + sex
##
## Call:
## lm(formula = weight ~ height + sex, data = Davis)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20.302 -4.808 -0.335 5.239 41.366
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -80.2107 16.8415 -4.763 3.96e-06 ***
## height 0.8341 0.1021 8.169 5.71e-14 ***
## sexM 7.7070 1.8345 4.201 4.20e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.258 on 177 degrees of freedom
## Multiple R-squared: 0.6271, Adjusted R-squared: 0.6229
## F-statistic: 148.8 on 2 and 177 DF, p-value: < 2.2e-16
weight ~ height + sex
weight ~ height
## Analysis of Variance Table
##
## Model 1: weight ~ height + sex
## Model 2: weight ~ height
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 177 12069
## 2 178 13273 -1 -1203.5 17.65 4.204e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## lm(formula = weight ~ height + sex, data = Davis)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20.302 -4.808 -0.335 5.239 41.366
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -80.2107 16.8415 -4.763 3.96e-06 ***
## height 0.8341 0.1021 8.169 5.71e-14 ***
## sexM 7.7070 1.8345 4.201 4.20e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.258 on 177 degrees of freedom
## Multiple R-squared: 0.6271, Adjusted R-squared: 0.6229
## F-statistic: 148.8 on 2 and 177 DF, p-value: < 2.2e-16
## Analysis of Variance Table
##
## Response: weight
## Df Sum Sq Mean Sq F value Pr(>F)
## height 1 19095.0 19095.0 280.04 < 2.2e-16 ***
## sex 1 1203.5 1203.5 17.65 4.204e-05 ***
## Residuals 177 12069.2 68.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Intercept) height sexM
## -80.2107328 0.8340964 7.7070166
## 2.5 % 97.5 %
## (Intercept) -113.44661 -46.974852
## height 0.63259 1.035603
## sexM 4.08671 11.327323
y ~ x + z + w …
y | x | z | w |
---|---|---|---|
-37.479581 | 1.390885 | -0.2913806 | 7.193786 |
-9.218105 | 1.726080 | -0.0846613 | 3.240860 |
-137.144153 | 4.705672 | -1.2925959 | 7.788095 |
-67.182923 | 9.161318 | 1.3762292 | 3.944410 |
-220.748670 | 12.631249 | 0.6231300 | 6.785929 |
Proporcional a variação compartilhada com outras preditoras
\[ VIF = \frac{1}{1-R_k^2} \]
\(R_k^2\) : coeficiente de determinação da preditora (k) em relação a outras preditoras do modelo
## x z w
## 12.155388 12.183386 1.008662
## x w
## 1.00163 1.00163
## z w
## 1.003937 1.003937
##
## Call:
## lm(formula = y ~ x + w + z + I(x^2) + I(z^2) + x:w + x:z + z:w +
## z:w:x, data = yxzw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.8495 -5.7956 -0.3322 4.2633 29.6627
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 21.193915 11.442878 1.852 0.0714 .
## x -2.572884 0.536259 -4.798 2.25e-05 ***
## w -4.332059 1.963077 -2.207 0.0331 *
## z 5.068630 5.895282 0.860 0.3950
## I(x^2) 0.518748 0.012522 41.426 < 2e-16 ***
## I(z^2) 0.516183 1.069157 0.483 0.6319
## x:w -3.022575 0.070387 -42.942 < 2e-16 ***
## x:z -0.199390 0.224934 -0.886 0.3807
## w:z 0.279907 0.726247 0.385 0.7020
## x:w:z -0.000639 0.006779 -0.094 0.9254
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.262 on 40 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 1.243e+05 on 9 and 40 DF, p-value: < 2.2e-16
## Analysis of Variance Table
##
## Model 1: y ~ x + w + z + I(x^2) + I(z^2) + x:w + x:z + z:w + z:w:x
## Model 2: y ~ x + w + z + I(x^2) + I(z^2) + x:w + x:z + z:w
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 40 3431.1
## 2 41 3431.9 -1 -0.76203 0.0089 0.9254
##
## Call:
## lm(formula = y ~ x + w + z + I(x^2) + I(z^2) + x:w + x:z + z:w,
## data = yxzw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.8821 -5.8719 -0.4094 4.2821 29.5060
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.39839 7.63268 2.673 0.01075 *
## x -2.56245 0.51833 -4.944 1.34e-05 ***
## w -4.19093 1.25405 -3.342 0.00178 **
## z 5.34953 5.02464 1.065 0.29326
## I(x^2) 0.51873 0.01237 41.938 < 2e-16 ***
## I(z^2) 0.51146 1.05499 0.485 0.63040
## x:w -3.02560 0.06186 -48.911 < 2e-16 ***
## x:z -0.20205 0.22044 -0.917 0.36471
## w:z 0.23783 0.56583 0.420 0.67645
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.149 on 41 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 1.433e+05 on 8 and 41 DF, p-value: < 2.2e-16
## Analysis of Variance Table
##
## Model 1: y ~ x + w + z + I(x^2) + I(z^2) + x:w + x:z + z:w
## Model 2: y ~ x + w + z + I(x^2) + I(z^2) + x:w + z:w
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 41 3431.9
## 2 42 3502.2 -1 -70.327 0.8402 0.3647
##
## Call:
## lm(formula = y ~ x + w + z + I(x^2) + I(z^2) + x:w + z:w, data = yxzw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.4363 -6.1137 -0.4808 4.3176 29.9606
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.818074 7.604429 2.738 0.00904 **
## x -2.324930 0.448053 -5.189 5.75e-06 ***
## w -4.240332 1.250502 -3.391 0.00153 **
## z 3.209428 4.440771 0.723 0.47386
## I(x^2) 0.507757 0.003094 164.089 < 2e-16 ***
## I(z^2) -0.422661 0.272336 -1.552 0.12817
## x:w -3.035963 0.060703 -50.013 < 2e-16 ***
## w:z 0.329621 0.555841 0.593 0.55635
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.132 on 42 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 1.644e+05 on 7 and 42 DF, p-value: < 2.2e-16
## Analysis of Variance Table
##
## Model 1: y ~ x + w + z + I(x^2) + I(z^2) + x:w + z:w
## Model 2: y ~ x + w + z + I(x^2) + I(z^2) + x:w
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 42 3502.2
## 2 43 3531.6 -1 -29.324 0.3517 0.5564
##
## Call:
## lm(formula = y ~ x + w + z + I(x^2) + I(z^2) + x:w, data = yxzw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.6707 -6.3689 -0.2563 4.6686 29.5533
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.717359 7.545000 2.746 0.008776 **
## x -2.474234 0.367821 -6.727 3.2e-08 ***
## w -4.355709 1.225927 -3.553 0.000939 ***
## z 4.906277 3.370301 1.456 0.152728
## I(x^2) 0.507920 0.003059 166.052 < 2e-16 ***
## I(z^2) -0.461620 0.262293 -1.760 0.085531 .
## x:w -3.001515 0.017489 -171.624 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.063 on 43 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 1.948e+05 on 6 and 43 DF, p-value: < 2.2e-16
## Analysis of Variance Table
##
## Model 1: y ~ x + w + z + I(x^2) + I(z^2) + x:w
## Model 2: y ~ x + w + z + I(x^2) + x:w
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 43 3531.6
## 2 44 3785.9 -1 -254.38 3.0974 0.08553 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## lm(formula = y ~ x + w + z + I(x^2) + x:w, data = yxzw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.0896 -5.7077 -0.5103 4.5774 30.7566
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23.531249 7.547344 3.118 0.00321 **
## x -1.992187 0.251285 -7.928 5.12e-10 ***
## w -5.205080 1.153480 -4.513 4.73e-05 ***
## z -0.515414 1.399219 -0.368 0.71437
## I(x^2) 0.503364 0.001668 301.786 < 2e-16 ***
## x:w -2.988520 0.016227 -184.169 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.276 on 44 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 2.231e+05 on 5 and 44 DF, p-value: < 2.2e-16
## Analysis of Variance Table
##
## Model 1: y ~ x + w + z + I(x^2) + x:w
## Model 2: y ~ x + w + I(x^2) + x:w
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 44 3785.9
## 2 45 3797.6 -1 -11.675 0.1357 0.7144
##
## Call:
## lm(formula = y ~ x + w + I(x^2) + x:w, data = yxzw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.9424 -5.5396 -0.7859 4.6774 30.3060
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23.437267 7.470240 3.137 0.003 **
## x -2.040476 0.212311 -9.611 1.78e-12 ***
## w -5.156007 1.134704 -4.544 4.13e-05 ***
## I(x^2) 0.503330 0.001649 305.172 < 2e-16 ***
## x:w -2.989057 0.016005 -186.753 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.186 on 45 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 2.843e+05 on 4 and 45 DF, p-value: < 2.2e-16
## Analysis of Variance Table
##
## Model 1: y ~ x + w + I(x^2) + x:w
## Model 2: y ~ x + w + I(x^2)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 45 3798
## 2 46 2947081 -1 -2943284 34877 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Model 1: y ~ x + w + I(x^2) + x:w
## Model 2: y ~ x + w + x:w
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 45 3798
## 2 46 7863171 -1 -7859373 93130 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\[ y \sim x + x^2 + x:w \]
##
## Call:
## lm(formula = y ~ x + w + I(x^2) + x:w, data = yxzw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.9424 -5.5396 -0.7859 4.6774 30.3060
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23.437267 7.470240 3.137 0.003 **
## x -2.040476 0.212311 -9.611 1.78e-12 ***
## w -5.156007 1.134704 -4.544 4.13e-05 ***
## I(x^2) 0.503330 0.001649 305.172 < 2e-16 ***
## x:w -2.989057 0.016005 -186.753 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.186 on 45 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 2.843e+05 on 4 and 45 DF, p-value: < 2.2e-16
## (Intercept) x w I(x^2) x:w
## 23.4372672 -2.0404761 -5.1560065 0.5033303 -2.9890572
## 2.5 % 97.5 %
## (Intercept) 8.3914314 38.4831031
## x -2.4680920 -1.6128602
## w -7.4414185 -2.8705945
## I(x^2) 0.5000084 0.5066522
## x:w -3.0212937 -2.9568206
\[ y = 23.44 - 2.04 x + 0.50 x^2 - 5.16 w -2.99 xw \]
x = sort(runif(50,1,100))
z = x/10 + rnorm(50,0,1)
w = runif(50,0,10)
y = 12 - 1.6 * x + 0.50 * x^2 - 4.2 * w - 3 *x * w + rnorm(50, 0, 10)
## (Intercept) x w I(x^2) x:w
## 23.4372672 -2.0404761 -5.1560065 0.5033303 -2.9890572
##
## Call:
## lm(formula = y ~ w + z + I(z^2) + z:w, data = yxzw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -784.03 -252.24 -22.12 103.84 1594.39
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 169.306 367.407 0.461 0.6472
## w -60.680 54.945 -1.104 0.2753
## z 91.107 102.293 0.891 0.3779
## I(z^2) 31.160 7.215 4.319 8.53e-05 ***
## w:z -20.429 7.769 -2.630 0.0117 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 455.7 on 45 degrees of freedom
## Multiple R-squared: 0.9026, Adjusted R-squared: 0.894
## F-statistic: 104.3 on 4 and 45 DF, p-value: < 2.2e-16