\[ y = {\alpha} + {\beta} x + \epsilon\] \[ \epsilon = N(0, \sigma) \]
\[ y = {\alpha} + {\beta} x + \epsilon\] \[ y_i = 1.2 + 3.5 x_i + \epsilon_i \] \[ \epsilon_i = N(0, 5) \]
| x1 | y0 | res | y1 |
|---|---|---|---|
| 1.0 | 4.70 | 1.08 | 5.78 |
| 1.5 | 6.45 | -2.71 | 3.74 |
| 2.0 | 8.20 | 4.46 | 12.66 |
| 2.5 | 9.95 | 2.98 | 12.93 |
| 3.0 | 11.70 | 8.18 | 19.88 |
| 3.5 | 13.45 | 3.45 | 16.90 |
| 4.0 | 15.20 | -6.41 | 8.79 |
| 4.5 | 16.95 | -1.07 | 15.88 |
| 5.0 | 18.70 | 9.48 | 28.18 |
\[ y_i = 1.2 + 3.5 x_i + \epsilon_i \] \[ \epsilon_i = N(0, 5) \]
##
## Call:
## lm(formula = y1 ~ x1, data = xy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.1424 -4.0088 0.9982 2.8714 6.1706
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.632 4.520 0.361 0.7287
## x1 4.076 1.384 2.945 0.0216 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.361 on 7 degrees of freedom
## Multiple R-squared: 0.5534, Adjusted R-squared: 0.4895
## F-statistic: 8.672 on 1 and 7 DF, p-value: 0.02156
\[ y_i = 1.2 + 3.5 x_i + \epsilon_i \]
## (Intercept) x1
## 1.632390 4.075949
## 2.5 % 97.5 %
## (Intercept) -9.0566136 12.321394
## x1 0.8031237 7.348775
\[ y_i = 1.2 + 3.5 x_i + \epsilon_i \] \[ \epsilon_i = N(0, 5) \]
##
## Call:
## lm(formula = y1 ~ x1, data = xy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.1424 -4.0088 0.9982 2.8714 6.1706
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.632 4.520 0.361 0.7287
## x1 4.076 1.384 2.945 0.0216 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.361 on 7 degrees of freedom
## Multiple R-squared: 0.5534, Adjusted R-squared: 0.4895
## F-statistic: 8.672 on 1 and 7 DF, p-value: 0.02156
##
## Call:
## lm(formula = growth ~ tannin, data = lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4556 -0.8889 -0.2389 0.9778 2.8944
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.7556 1.0408 11.295 9.54e-06 ***
## tannin -1.2167 0.2186 -5.565 0.000846 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.693 on 7 degrees of freedom
## Multiple R-squared: 0.8157, Adjusted R-squared: 0.7893
## F-statistic: 30.97 on 1 and 7 DF, p-value: 0.0008461
\[ SQ_{total} = SQ_{entre} + SQ_{intra} \]
\[ SQ_{total} = SQ_{mod} + SQ_{res} \]
\[ SQ_{total} = \sum_{i=1}^n (y_{i} - \bar{y})^2\]
| tannin | growth | mediag | devTotal | dqT |
|---|---|---|---|---|
| 0 | 12 | 6.89 | 5.11 | 26.12 |
| 1 | 10 | 6.89 | 3.11 | 9.68 |
| 2 | 8 | 6.89 | 1.11 | 1.23 |
| 3 | 11 | 6.89 | 4.11 | 16.90 |
| 4 | 6 | 6.89 | -0.89 | 0.79 |
| 5 | 7 | 6.89 | 0.11 | 0.01 |
| 6 | 2 | 6.89 | -4.89 | 23.90 |
| 7 | 3 | 6.89 | -3.89 | 15.12 |
| 8 | 3 | 6.89 | -3.89 | 15.12 |
## [1] 108.89
\[ SQ_{error} = \sum_{i=1}^n (y_{i} - \hat{y}_i)^2\]
| tannin | growth | residuos | preditos | devTotal |
|---|---|---|---|---|
| 0 | 12 | 0.24 | 11.76 | 5.11 |
| 1 | 10 | -0.54 | 10.54 | 3.11 |
| 2 | 8 | -1.32 | 9.32 | 1.11 |
| 3 | 11 | 2.89 | 8.11 | 4.11 |
| 4 | 6 | -0.89 | 6.89 | -0.89 |
| 5 | 7 | 1.33 | 5.67 | 0.11 |
| 6 | 2 | -2.46 | 4.46 | -4.89 |
| 7 | 3 | -0.24 | 3.24 | -3.89 |
| 8 | 3 | 0.98 | 2.02 | -3.89 |
## [1] 20.07
\[ SQ_{total} = SQ_{mod} + SQ_{erro} \]
\[ SQ_{mod} = SQ_{total} - SQ_{res} \]
## [1] 88.81667
| Fonte | SQ | GL | MQ |
|---|---|---|---|
| Modelo Linear | 88.82 | 1 | 88.82 |
| Erro | 20.07 | 7 | 2.87 |
| Total | 108.89 | 8 |
| Fonte | SQ | GL | MQ | F | pvalor |
|---|---|---|---|---|---|
| Modelo Linear | 88.82 | 1 | 88.82 | 30.97 | 0.00085 |
| Erro | 20.07 | 7 | 2.87 | ||
| Total | 108.89 | 8 |
## Analysis of Variance Table
##
## Response: growth
## Df Sum Sq Mean Sq F value Pr(>F)
## tannin 1 88.817 88.817 30.974 0.0008461 ***
## Residuals 7 20.072 2.867
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
| Fonte | SQ | GL | MQ | F | pvalor |
|---|---|---|---|---|---|
| Modelo Linear | 88.82 | 1 | 88.82 | 30.97 | 0.00085 |
| Erro | 20.07 | 7 | 2.87 | ||
| Total | 108.89 | 8 |
\[ R^2 = \frac{SQ_{mod}}{SQ_{total}} \]
| Fonte | SQ | GL | MQ | F | pvalor |
|---|---|---|---|---|---|
| Modelo Linear | 88.82 | 1 | 88.82 | 30.97 | 0.00085 |
| Erro | 20.07 | 7 | 2.87 | ||
| Total | 108.89 | 8 |
\(R^2\)
## [1] 0.816
##
## Call:
## lm(formula = growth ~ tannin, data = lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4556 -0.8889 -0.2389 0.9778 2.8944
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.7556 1.0408 11.295 9.54e-06 ***
## tannin -1.2167 0.2186 -5.565 0.000846 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.693 on 7 degrees of freedom
## Multiple R-squared: 0.8157, Adjusted R-squared: 0.7893
## F-statistic: 30.97 on 1 and 7 DF, p-value: 0.0008461
##
## Call:
## lm(formula = growth ~ 1, data = lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8889 -3.8889 0.1111 3.1111 5.1111
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.889 1.230 5.602 0.000509 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.689 on 8 degrees of freedom
## Analysis of Variance Table
##
## Model 1: growth ~ 1
## Model 2: growth ~ tannin
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 8 108.889
## 2 7 20.072 1 88.817 30.974 0.0008461 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Response: growth
## Df Sum Sq Mean Sq F value Pr(>F)
## tannin 1 88.817 88.817 30.974 0.0008461 ***
## Residuals 7 20.072 2.867
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| tannin | 1 | 88.81667 | 88.81667 | 30.97398 | 0.0008461 |
| Residuals | 7 | 20.07222 | 2.86746 |
| Res.Df | RSS | Df | Sum of Sq | F | Pr(>F) |
|---|---|---|---|---|---|
| 8 | 108.88889 | ||||
| 7 | 20.07222 | 1 | 88.81667 | 30.97398 | 0.0008461 |
| solo | colhe | |
|---|---|---|
| 1 | are | 6 |
| 2 | are | 10 |
| 3 | are | 8 |
| 4 | are | 6 |
| 5 | are | 14 |
| 11 | arg | 17 |
| 12 | arg | 15 |
| 13 | arg | 3 |
| 14 | arg | 11 |
| 15 | arg | 14 |
| 21 | hum | 13 |
| 22 | hum | 16 |
| 23 | hum | 9 |
| 24 | hum | 12 |
| 25 | hum | 15 |
| colhe | solo | arg | hum | |
|---|---|---|---|---|
| 1 | 6 | are | 0 | 0 |
| 2 | 10 | are | 0 | 0 |
| 3 | 8 | are | 0 | 0 |
| 4 | 6 | are | 0 | 0 |
| 5 | 14 | are | 0 | 0 |
| 11 | 17 | arg | 1 | 0 |
| 12 | 15 | arg | 1 | 0 |
| 13 | 3 | arg | 1 | 0 |
| 14 | 11 | arg | 1 | 0 |
| 15 | 14 | arg | 1 | 0 |
| 21 | 13 | hum | 0 | 1 |
| 22 | 16 | hum | 0 | 1 |
| 23 | 9 | hum | 0 | 1 |
| 24 | 12 | hum | 0 | 1 |
| 25 | 15 | hum | 0 | 1 |
Número de nÃveis do fator menos 1 (intercepto)
\(y = \alpha_{d_1} + \beta_{2} x_{d_2}+ \beta_3 x_{d_3}\)
\(\alpha_{d_1} = \bar{x}_1\)
\(\beta_{2}= \bar{x}_2 - \bar{x}_1\)
\(\beta_{3}= \bar{x}_3 - \bar{x}_1\)
| colhe | solo | arg | hum | |
|---|---|---|---|---|
| 1 | 6 | are | 0 | 0 |
| 2 | 10 | are | 0 | 0 |
| 3 | 8 | are | 0 | 0 |
| 4 | 6 | are | 0 | 0 |
| 5 | 14 | are | 0 | 0 |
| 11 | 17 | arg | 1 | 0 |
| 12 | 15 | arg | 1 | 0 |
| 13 | 3 | arg | 1 | 0 |
| 14 | 11 | arg | 1 | 0 |
| 15 | 14 | arg | 1 | 0 |
| 21 | 13 | hum | 0 | 1 |
| 22 | 16 | hum | 0 | 1 |
| 23 | 9 | hum | 0 | 1 |
| 24 | 12 | hum | 0 | 1 |
| 25 | 15 | hum | 0 | 1 |
##
## Call:
## lm(formula = colhe ~ arg + hum, data = croplin)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.5 -1.8 0.3 1.7 7.1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.900 1.081 9.158 9.04e-10 ***
## arg 1.600 1.529 1.047 0.30456
## hum 4.400 1.529 2.878 0.00773 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.418 on 27 degrees of freedom
## Multiple R-squared: 0.2392, Adjusted R-squared: 0.1829
## F-statistic: 4.245 on 2 and 27 DF, p-value: 0.02495
##
## Call:
## lm(formula = colhe ~ solo, data = crop)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.5 -1.8 0.3 1.7 7.1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.900 1.081 9.158 9.04e-10 ***
## soloarg 1.600 1.529 1.047 0.30456
## solohum 4.400 1.529 2.878 0.00773 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.418 on 27 degrees of freedom
## Multiple R-squared: 0.2392, Adjusted R-squared: 0.1829
## F-statistic: 4.245 on 2 and 27 DF, p-value: 0.02495
## (Intercept) arg hum
## 9.9 1.6 4.4
## are arg hum
## 9.9 11.5 14.3
\[y = \hat{\alpha}_{d_1} + \hat{\beta}_{2} x_{d_2}+ \hat{\beta}_3 x_{d_3}\]
| colhe | solo | arg | hum | |
|---|---|---|---|---|
| 1 | 6 | are | 0 | 0 |
| 2 | 10 | are | 0 | 0 |
| 3 | 8 | are | 0 | 0 |
| 11 | 17 | arg | 1 | 0 |
| 12 | 15 | arg | 1 | 0 |
| 13 | 3 | arg | 1 | 0 |
| 21 | 13 | hum | 0 | 1 |
| 22 | 16 | hum | 0 | 1 |
| 23 | 9 | hum | 0 | 1 |
## (Intercept) arg hum
## 9.9 1.6 4.4
\[y = \alpha_{d_1} + \beta_{2} x_{d_2}+ \beta_3 x_{d_3}\]
\(\alpha_{d_1} = \bar{x}_1\)
\(\beta_{2}= \bar{x}_2 - \bar{x}_1\)
\(\beta_{3}= \bar{x}_3 - \bar{x}_1\)