Modelos | Relação | Resíduos | Observações |
---|---|---|---|
Linear | Linear | Normal | Independente |
Generalizados | Linearizável | Outras | Independente |
Mistos | Linear | Normal | Dependência |
Generalizado Mistos | Linearizável | Outras | Dependência |
\[ y = {\alpha} + {\beta} x + \epsilon\] \[ \epsilon = N(0, \sigma) \]
\[ y = {\alpha} + \sum{\beta_i x_i} + \epsilon\] \[ \epsilon = N(0, \sigma) \]
\[ y = \hat{\alpha} + \hat{\beta_1} x_1 + ... + \hat{\beta_n} x_n + \epsilon\] \[ \epsilon = N(0, \sigma) \]
## 'data.frame': 200 obs. of 5 variables:
## $ sex : Factor w/ 2 levels "F","M": 2 1 1 2 1 2 2 2 2 2 ...
## $ weight: int 77 58 53 68 59 76 76 69 71 65 ...
## $ height: int 182 161 161 177 157 170 167 186 178 171 ...
## $ repwt : int 77 51 54 70 59 76 77 73 71 64 ...
## $ repht : int 180 159 158 175 155 165 165 180 175 170 ...
par(mar=c(4,4,2,2), cex.lab=1.5, cex.axis=1.2, las=1,
bg = "gray70", bty="n")
plot(NA, type="n", axes = FALSE, ann = FALSE,
xlim =range(Davis$height), ylim = range(Davis$weight))
rect(par()$usr[1],par()$usr[3], par()$usr[2],par()$usr[4],
col="gray90")
points(weight ~ height, data = Davis, pch = 19,cex= 1.5,
col = rgb(0,0,1, 0.4))
axis(1)
axis(2)
mtext("Altura (cm)", 1, line=2.5, cex = 1.7)
mtext("Peso (kg)", 2, line=2.5, cex = 1.7, las = 0)
##
## Call:
## lm(formula = weight ~ height, data = Davis)
##
## Residuals:
## Min 1Q Median 3Q Max
## -19.928 -5.406 -0.651 4.891 42.641
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -130.84185 12.30184 -10.64 <2e-16 ***
## height 1.15112 0.07193 16.00 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.635 on 178 degrees of freedom
## Multiple R-squared: 0.5899, Adjusted R-squared: 0.5876
## F-statistic: 256.1 on 1 and 178 DF, p-value: < 2.2e-16
newx <- seq(min(Davis$height) -10, max(Davis$height) + 10, length.out=100)
preds <- predict(lmdavis, newdata = data.frame(height=newx),
interval = 'confidence')
kable(rbind(head(preds),tail(preds)))
fit | lwr | upr | |
---|---|---|---|
1 | 28.01250 | 23.18864 | 32.83636 |
2 | 28.81479 | 24.08631 | 33.54328 |
3 | 29.61709 | 24.98382 | 34.25035 |
4 | 30.41938 | 25.88118 | 34.95758 |
5 | 31.22168 | 26.77837 | 35.66498 |
6 | 32.02397 | 27.67539 | 36.37256 |
95 | 103.42820 | 98.61139 | 108.24501 |
96 | 104.23049 | 99.31818 | 109.14281 |
97 | 105.03279 | 100.02484 | 110.04074 |
98 | 105.83508 | 100.73137 | 110.93880 |
99 | 106.63738 | 101.43779 | 111.83697 |
100 | 107.43967 | 102.14409 | 112.73526 |
polygon(c(rev(newx), newx), c(rev(preds[ ,3]), preds[ ,2]),
col = rgb(0,0,0,0.2), border = NA)
abline(lmdavis, lwd = 2.5, col = "black")
## Analysis of Variance Table
##
## Response: weight
## Df Sum Sq Mean Sq F value Pr(>F)
## height 1 19095 19095.0 256.08 < 2.2e-16 ***
## Residuals 178 13273 74.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
peso ~ altura
## Analysis of Variance Table
##
## Model 1: weight ~ 1
## Model 2: weight ~ height
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 179 32368
## 2 178 13273 1 19095 256.08 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\(p_{valor} = 2.2e{-16} = 2.2 * 10^{-16}\)
\(r^2 = 0.587\)
## Analysis of Variance Table
##
## Response: weight
## Df Sum Sq Mean Sq F value Pr(>F)
## height 1 19095 19095.0 256.08 < 2.2e-16 ***
## Residuals 178 13273 74.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Model 1: weight ~ 1
## Model 2: weight ~ height
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 179 32368
## 2 178 13273 1 19095 256.08 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## sex weight height
## 1 M 77 182
## 2 F 58 161
## 3 F 53 161
## 4 M 68 177
## 5 F 59 157
## 6 M 76 170
## 194 F 51 156
## 195 F 62 164
## 196 M 74 175
## 197 M 83 180
## 199 M 90 181
## 200 M 79 177
##
## Call:
## lm(formula = weight ~ height + sex, data = Davis)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20.302 -4.808 -0.335 5.239 41.366
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -80.2107 16.8415 -4.763 3.96e-06 ***
## height 0.8341 0.1021 8.169 5.71e-14 ***
## sexM 7.7070 1.8345 4.201 4.20e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.258 on 177 degrees of freedom
## Multiple R-squared: 0.6271, Adjusted R-squared: 0.6229
## F-statistic: 148.8 on 2 and 177 DF, p-value: < 2.2e-16
## (Intercept) height sexM
## -80.2107328 0.8340964 7.7070166
\[ peso = -80.21 + 0.83 * altura + 7.71 * sexo \]
\[ peso = -80.21 + 0.83 * altura + 7.71 * sexo \]
## Analysis of Variance Table
##
## Response: weight
## Df Sum Sq Mean Sq F value Pr(>F)
## height 1 19095.0 19095.0 280.04 < 2.2e-16 ***
## sex 1 1203.5 1203.5 17.65 4.204e-05 ***
## Residuals 177 12069.2 68.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Response: weight
## Df Sum Sq Mean Sq F value Pr(>F)
## sex 1 15748.5 15748.5 230.958 < 2.2e-16 ***
## height 1 4550.1 4550.1 66.728 5.713e-14 ***
## Residuals 177 12069.2 68.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Model 1: weight ~ sex + height
## Model 2: weight ~ height + sex
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 177 12069
## 2 177 12069 0 -1.819e-12
## Analysis of Variance Table
##
## Response: weight
## Df Sum Sq Mean Sq F value Pr(>F)
## height 1 19095.0 19095.0 280.04 < 2.2e-16 ***
## sex 1 1203.5 1203.5 17.65 4.204e-05 ***
## Residuals 177 12069.2 68.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Response: weight
## Df Sum Sq Mean Sq F value Pr(>F)
## sex 1 15748.5 15748.5 230.958 < 2.2e-16 ***
## height 1 4550.1 4550.1 66.728 5.713e-14 ***
## Residuals 177 12069.2 68.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Response: weight
## Df Sum Sq Mean Sq F value Pr(>F)
## height 1 19095.0 19095.0 280.04 < 2.2e-16 ***
## sex 1 1203.5 1203.5 17.65 4.204e-05 ***
## Residuals 177 12069.2 68.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Model 1: weight ~ 1
## Model 2: weight ~ height + sex
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 179 32368
## 2 177 12069 2 20298 148.84 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Intercept) height sexM
## -80.2107328 0.8340964 7.7070166
\[w_f = \hat{\alpha}+ \hat{\beta_s} sex + \hat{\beta_h} *height\] \[w_f = \hat{\alpha} + \hat{\beta_h} * height\]
## (Intercept) height sexM
## -80.2107328 0.8340964 7.7070166
\[w_h = \hat{\alpha} + \hat{\beta_s}* sex + \hat{\beta} * height\] \[w_h = \hat{\alpha}+ \hat{\beta_s} + \hat{\beta_h} * height\]
##
## Call:
## lm(formula = weight ~ height + sex + sex:height, data = Davis)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20.990 -4.548 -0.926 4.821 41.023
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -45.7988 24.8453 -1.843 0.0670 .
## height 0.6252 0.1507 4.148 5.22e-05 ***
## sexM -57.4326 34.8293 -1.649 0.1009
## height:sexM 0.3815 0.2037 1.873 0.0628 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.2 on 176 degrees of freedom
## Multiple R-squared: 0.6344, Adjusted R-squared: 0.6282
## F-statistic: 101.8 on 3 and 176 DF, p-value: < 2.2e-16
## Analysis of Variance Table
##
## Response: weight
## Df Sum Sq Mean Sq F value Pr(>F)
## height 1 19095.0 19095.0 284.0037 < 2.2e-16 ***
## sex 1 1203.5 1203.5 17.8997 3.74e-05 ***
## height:sex 1 235.8 235.8 3.5075 0.06275 .
## Residuals 176 11833.4 67.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Model 1: weight ~ height + sex + sex:height
## Model 2: weight ~ 1
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 176 11833
## 2 179 32368 -3 -20534 101.8 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Intercept) height sexM height:sexM
## -45.7988220 0.6252035 -57.4326307 0.3815088
\[w = \hat{\alpha}+ \hat{\beta_s} sex + \hat{\beta_h} height + \hat{\beta}_{s:h} sex* height\] \[w_m = \hat{\alpha} + \hat{\beta_h} height\]
\[w = \hat{\alpha} + \hat{\beta_s} sex + \hat{\beta_h} height + \hat{\beta}_{h:s} sex * height \] \[w_h = \hat{\alpha}+ \hat{\beta_s} + (\hat{\beta_h} + \hat{\beta}_{h:s}) * height\]
\[w = \hat{\alpha}+ \hat{\beta_s} sex + \hat{\beta_h} height + \hat{\beta}_{s:h} sex* height\] \[sex =0\]
## (Intercept) height sexM height:sexM
## -45.7988220 0.6252035 -57.4326307 0.3815088
## [1] 54.85893
points(x= 161, y= predMulher, cex= 3)
points(x= 161, y= predMulher, pch = 19, cex= 1.5)
segments(x0 = 161, y=0, y1= predMulher, lty=2, lwd= 2)
\[w = \hat{\alpha}+ \hat{\beta_s} sex + \hat{\beta_h} height + \hat{\beta}_{s:h} sex* height\] \[ sex = 1\]
## (Intercept) height sexM height:sexM
## -45.7988220 0.6252035 -57.4326307 0.3815088
predHomem <- (coefull[1]+ coefull[3]) + (coefull[2]+ coefull[4]) * 182
(predHomem <- as.numeric(predHomem))
## [1] 79.99018
points(x= 182, y= predHomem, cex= 3)
points(x= 182, y= predHomem, pch = 19, cex= 1.5)
segments(x0 = 182, y=0, y1= predHomem, lty=2, lwd= 2)
Modelos aninhados: o mais simples está contido no mais complexo.
Razão da Variância
Distância ao modelo saturado.
\[ D = 2*(LL_1 - LL_0)\]
Baseado no cálculo da verossimilhança, proporcional à probabilidade da realização dos dados e penalizado pelo número de parâmetros.
Distância ao modelo verdadeiro
\[ AIC = -2LL + 2k \]
Atualização da probabilidade posteriori, baseado em uma probabilidade priori
\[P(H|dados) \sim L(dados| \theta) * P(prior)\]
Critério para a tomada de decisão (Variância)
* retenha o modelo mais simples
* continue simplificando
* retenha o modelo complexo
* modelo MINÍMO ADEQUADO
## Analysis of Variance Table
##
## Model 1: weight ~ height + sex + sex:height
## Model 2: weight ~ height + sex
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 176 11833
## 2 177 12069 -1 -235.82 3.5075 0.06275 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Model 1: weight ~ height + sex
## Model 2: weight ~ height
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 177 12069
## 2 178 13273 -1 -1203.5 17.65 4.204e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## lm(formula = weight ~ height + sex, data = Davis)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20.302 -4.808 -0.335 5.239 41.366
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -80.2107 16.8415 -4.763 3.96e-06 ***
## height 0.8341 0.1021 8.169 5.71e-14 ***
## sexM 7.7070 1.8345 4.201 4.20e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.258 on 177 degrees of freedom
## Multiple R-squared: 0.6271, Adjusted R-squared: 0.6229
## F-statistic: 148.8 on 2 and 177 DF, p-value: < 2.2e-16
Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
---|---|---|---|---|---|
height | 1 | 19095.0407 | 19095.0407 | 284.0037 | 0.0000 |
sex | 1 | 1203.4919 | 1203.4919 | 17.8997 | 0.0000 |
height:sex | 1 | 235.8241 | 235.8241 | 3.5075 | 0.0628 |
Residuals | 176 | 11833.3933 | 67.2352 |
Res.Df | RSS | Df | Sum of Sq | F | Pr(>F) |
---|---|---|---|---|---|
177 | 12069.22 | ||||
176 | 11833.39 | 1 | 235.8241 | 3.5075 | 0.0628 |
Res.Df | RSS | Df | Sum of Sq | F | Pr(>F) |
---|---|---|---|---|---|
179 | 32367.75 | ||||
178 | 13272.71 | 1 | 19095.0407 | 284.0037 | 0.0000 |
177 | 12069.22 | 1 | 1203.4919 | 17.8997 | 0.0000 |
176 | 11833.39 | 1 | 235.8241 | 3.5075 | 0.0628 |
Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
---|---|---|---|---|---|
height | 1 | 19095.0407 | 19095.0407 | 284.0037 | 0.0000 |
sex | 1 | 1203.4919 | 1203.4919 | 17.8997 | 0.0000 |
height:sex | 1 | 235.8241 | 235.8241 | 3.5075 | 0.0628 |
Residuals | 176 | 11833.3933 | 67.2352 |
## (Intercept) height sexM
## -80.2107328 0.8340964 7.7070166
## 2.5 % 97.5 %
## (Intercept) -113.44661 -46.974852
## height 0.63259 1.035603
## sexM 4.08671 11.327323
par(mfrow = c(2,2), mar=c(4,4,2,2), cex.lab=1.2, cex.axis=1.2, las=1, bg = "gray70", bty="n")
plot(lmdavis01)
##
## Call:
## lm(formula = weight ~ height + sex, data = Davis)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20.302 -4.808 -0.335 5.239 41.366
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -80.2107 16.8415 -4.763 3.96e-06 ***
## height 0.8341 0.1021 8.169 5.71e-14 ***
## sexM 7.7070 1.8345 4.201 4.20e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.258 on 177 degrees of freedom
## Multiple R-squared: 0.6271, Adjusted R-squared: 0.6229
## F-statistic: 148.8 on 2 and 177 DF, p-value: < 2.2e-16
rad | temp | wind | ozone |
---|---|---|---|
190 | 67 | 7.4 | 41 |
118 | 72 | 8.0 | 36 |
149 | 74 | 12.6 | 12 |
313 | 62 | 11.5 | 18 |
299 | 65 | 8.6 | 23 |
99 | 59 | 13.8 | 19 |
19 | 61 | 20.1 | 8 |
256 | 69 | 9.7 | 16 |
290 | 66 | 9.2 | 11 |
274 | 68 | 10.9 | 14 |
var | natureza | tipo | descrição |
---|---|---|---|
rad | pred | contínua | radiação |
temp | pred | contínua | temperatura |
wind | pred | contínua | vento |
ozone | resposta | contínua | ozônio |
Proporcional a variação compartilhada com outras preditoras
\[ VIF = \frac{1}{1-R_k^2} \]
\(R_k^2\) : coeficiente de determinação da preditora (k) em relação a outras preditoras do modelo
##
## Call:
## lm(formula = ozone ~ temp * wind * rad + I(temp^2) + I(wind^2) +
## I(rad^2), data = ozo)
##
## Residuals:
## Min 1Q Median 3Q Max
## -38.894 -11.205 -2.736 8.809 70.551
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.683e+02 2.073e+02 2.741 0.00725 **
## temp -1.076e+01 4.303e+00 -2.501 0.01401 *
## wind -3.237e+01 1.173e+01 -2.760 0.00687 **
## rad -3.117e-01 5.585e-01 -0.558 0.57799
## I(temp^2) 5.833e-02 2.396e-02 2.435 0.01668 *
## I(wind^2) 6.106e-01 1.469e-01 4.157 6.81e-05 ***
## I(rad^2) -3.619e-04 2.573e-04 -1.407 0.16265
## temp:wind 2.377e-01 1.367e-01 1.739 0.08519 .
## temp:rad 8.403e-03 7.512e-03 1.119 0.26602
## wind:rad 2.054e-02 4.892e-02 0.420 0.67552
## temp:wind:rad -4.324e-04 6.595e-04 -0.656 0.51358
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.82 on 100 degrees of freedom
## Multiple R-squared: 0.7394, Adjusted R-squared: 0.7133
## F-statistic: 28.37 on 10 and 100 DF, p-value: < 2.2e-16
lmoz01 <- lm(ozone ~ temp + wind + rad +
I(temp^2)+ I(wind^2) + I(rad^2) +
temp:wind + temp:rad + wind:rad, data = ozo)
anova(lmozfull, lmoz01)
## Analysis of Variance Table
##
## Model 1: ozone ~ temp * wind * rad + I(temp^2) + I(wind^2) + I(rad^2)
## Model 2: ozone ~ temp + wind + rad + I(temp^2) + I(wind^2) + I(rad^2) +
## temp:wind + temp:rad + wind:rad
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 100 31742
## 2 101 31879 -1 -136.44 0.4298 0.5136
##
## Call:
## lm(formula = ozone ~ temp + wind + rad + I(temp^2) + I(wind^2) +
## I(rad^2) + temp:wind + temp:rad + wind:rad, data = ozo)
##
## Residuals:
## Min 1Q Median 3Q Max
## -39.611 -11.455 -2.901 8.548 70.325
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.245e+02 1.957e+02 2.680 0.0086 **
## temp -1.021e+01 4.209e+00 -2.427 0.0170 *
## wind -2.802e+01 9.645e+00 -2.906 0.0045 **
## rad 2.628e-02 2.142e-01 0.123 0.9026
## I(temp^2) 5.953e-02 2.382e-02 2.499 0.0141 *
## I(wind^2) 6.173e-01 1.461e-01 4.225 5.25e-05 ***
## I(rad^2) -3.388e-04 2.541e-04 -1.333 0.1855
## temp:wind 1.734e-01 9.497e-02 1.825 0.0709 .
## temp:rad 3.750e-03 2.459e-03 1.525 0.1303
## wind:rad -1.127e-02 6.277e-03 -1.795 0.0756 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.77 on 101 degrees of freedom
## Multiple R-squared: 0.7383, Adjusted R-squared: 0.715
## F-statistic: 31.66 on 9 and 101 DF, p-value: < 2.2e-16
lmoz02 <- lm(ozone ~ temp + wind + rad +
I(temp^2)+ I(wind^2) + I(rad^2) +
temp:wind + wind:rad, data = ozo)
anova(lmoz01, lmoz02)
## Analysis of Variance Table
##
## Model 1: ozone ~ temp + wind + rad + I(temp^2) + I(wind^2) + I(rad^2) +
## temp:wind + temp:rad + wind:rad
## Model 2: ozone ~ temp + wind + rad + I(temp^2) + I(wind^2) + I(rad^2) +
## temp:wind + wind:rad
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 101 31879
## 2 102 32613 -1 -734.23 2.3262 0.1303
##
## Call:
## lm(formula = ozone ~ temp + wind + rad + I(temp^2) + I(wind^2) +
## I(rad^2) + temp:wind + wind:rad, data = ozo)
##
## Residuals:
## Min 1Q Median 3Q Max
## -42.040 -11.962 -2.863 9.661 70.475
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.488e+02 1.963e+02 2.796 0.00619 **
## temp -1.144e+01 4.158e+00 -2.752 0.00702 **
## wind -2.876e+01 9.695e+00 -2.967 0.00375 **
## rad 3.061e-01 1.113e-01 2.751 0.00704 **
## I(temp^2) 7.145e-02 2.265e-02 3.154 0.00211 **
## I(wind^2) 6.363e-01 1.465e-01 4.343 3.33e-05 ***
## I(rad^2) -2.690e-04 2.516e-04 -1.069 0.28755
## temp:wind 1.840e-01 9.533e-02 1.930 0.05644 .
## wind:rad -1.381e-02 6.090e-03 -2.268 0.02541 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.88 on 102 degrees of freedom
## Multiple R-squared: 0.7322, Adjusted R-squared: 0.7112
## F-statistic: 34.87 on 8 and 102 DF, p-value: < 2.2e-16
lmoz03 <- lm(ozone ~ temp + wind + rad +
I(temp^2)+ I(wind^2) +
temp:wind + wind:rad, data = ozo)
anova( lmoz02, lmoz03)
## Analysis of Variance Table
##
## Model 1: ozone ~ temp + wind + rad + I(temp^2) + I(wind^2) + I(rad^2) +
## temp:wind + wind:rad
## Model 2: ozone ~ temp + wind + rad + I(temp^2) + I(wind^2) + temp:wind +
## wind:rad
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 102 32613
## 2 103 32978 -1 -365.45 1.143 0.2875
##
## Call:
## lm(formula = ozone ~ temp + wind + rad + I(temp^2) + I(wind^2) +
## temp:wind + wind:rad, data = ozo)
##
## Residuals:
## Min 1Q Median 3Q Max
## -41.379 -11.375 -2.217 8.921 71.247
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 514.401470 193.783580 2.655 0.00920 **
## temp -10.654041 4.094889 -2.602 0.01064 *
## wind -27.391965 9.616998 -2.848 0.00531 **
## rad 0.212945 0.069283 3.074 0.00271 **
## I(temp^2) 0.067805 0.022408 3.026 0.00313 **
## I(wind^2) 0.619396 0.145773 4.249 4.72e-05 ***
## temp:wind 0.169674 0.094458 1.796 0.07538 .
## wind:rad -0.013561 0.006089 -2.227 0.02813 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.89 on 103 degrees of freedom
## Multiple R-squared: 0.7292, Adjusted R-squared: 0.7108
## F-statistic: 39.63 on 7 and 103 DF, p-value: < 2.2e-16
lmoz04 <- lm(ozone ~ temp + wind + rad +
I(temp^2)+ I(wind^2) +
wind:rad, data = ozo)
anova( lmoz03, lmoz04)
## Analysis of Variance Table
##
## Model 1: ozone ~ temp + wind + rad + I(temp^2) + I(wind^2) + temp:wind +
## wind:rad
## Model 2: ozone ~ temp + wind + rad + I(temp^2) + I(wind^2) + wind:rad
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 103 32978
## 2 104 34011 -1 -1033.1 3.2267 0.07538 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## lm(formula = ozone ~ temp + wind + rad + I(temp^2) + I(wind^2) +
## wind:rad, data = ozo)
##
## Residuals:
## Min 1Q Median 3Q Max
## -44.478 -10.735 -2.437 9.685 77.543
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 223.573855 107.618223 2.077 0.040221 *
## temp -5.197139 2.775039 -1.873 0.063902 .
## wind -10.816032 2.736757 -3.952 0.000141 ***
## rad 0.173431 0.066398 2.612 0.010333 *
## I(temp^2) 0.043640 0.018112 2.410 0.017731 *
## I(wind^2) 0.430059 0.101767 4.226 5.12e-05 ***
## wind:rad -0.009819 0.005783 -1.698 0.092507 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.08 on 104 degrees of freedom
## Multiple R-squared: 0.7208, Adjusted R-squared: 0.7047
## F-statistic: 44.74 on 6 and 104 DF, p-value: < 2.2e-16
## Analysis of Variance Table
##
## Model 1: ozone ~ temp + wind + rad + I(temp^2) + I(wind^2) + wind:rad
## Model 2: ozone ~ temp + wind + rad + I(temp^2) + I(wind^2)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 104 34011
## 2 105 34954 -1 -942.85 2.883 0.09251 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## lm(formula = ozone ~ temp + wind + rad + I(temp^2) + I(wind^2),
## data = ozo)
##
## Residuals:
## Min 1Q Median 3Q Max
## -48.044 -10.796 -4.138 8.131 80.098
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 291.16758 100.87723 2.886 0.00473 **
## temp -6.33955 2.71627 -2.334 0.02150 *
## wind -13.39674 2.29623 -5.834 6.05e-08 ***
## rad 0.06586 0.02005 3.285 0.00139 **
## I(temp^2) 0.05102 0.01774 2.876 0.00488 **
## I(wind^2) 0.46464 0.10060 4.619 1.10e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.25 on 105 degrees of freedom
## Multiple R-squared: 0.713, Adjusted R-squared: 0.6994
## F-statistic: 52.18 on 5 and 105 DF, p-value: < 2.2e-16
## Analysis of Variance Table
##
## Model 1: ozone ~ temp + wind + rad + I(temp^2) + I(wind^2)
## Model 2: ozone ~ temp + wind + rad + I(wind^2)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 105 34954
## 2 106 37708 -1 -2753.7 8.2718 0.004877 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## lm(formula = ozone ~ temp + wind + rad + I(temp^2) + I(wind^2),
## data = ozo)
##
## Residuals:
## Min 1Q Median 3Q Max
## -48.044 -10.796 -4.138 8.131 80.098
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 291.16758 100.87723 2.886 0.00473 **
## temp -6.33955 2.71627 -2.334 0.02150 *
## wind -13.39674 2.29623 -5.834 6.05e-08 ***
## rad 0.06586 0.02005 3.285 0.00139 **
## I(temp^2) 0.05102 0.01774 2.876 0.00488 **
## I(wind^2) 0.46464 0.10060 4.619 1.10e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.25 on 105 degrees of freedom
## Multiple R-squared: 0.713, Adjusted R-squared: 0.6994
## F-statistic: 52.18 on 5 and 105 DF, p-value: < 2.2e-16
lmoz07 <- lm(log(ozone) ~ temp + wind + rad +
I(temp^2)+ I(wind^2) + I(rad^2) + temp:wind +
temp:rad + wind:rad + temp:wind:rad, data = ozo)
summary(lmoz07)
##
## Call:
## lm(formula = log(ozone) ~ temp + wind + rad + I(temp^2) + I(wind^2) +
## I(rad^2) + temp:wind + temp:rad + wind:rad + temp:wind:rad,
## data = ozo)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.91943 -0.24169 -0.01742 0.28213 1.11802
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.803e+00 5.676e+00 0.494 0.6225
## temp -3.018e-02 1.178e-01 -0.256 0.7983
## wind -9.812e-02 3.211e-01 -0.306 0.7605
## rad 2.771e-02 1.529e-02 1.812 0.0729 .
## I(temp^2) 6.034e-04 6.559e-04 0.920 0.3598
## I(wind^2) 8.732e-03 4.021e-03 2.172 0.0322 *
## I(rad^2) -1.489e-05 7.043e-06 -2.114 0.0370 *
## temp:wind -1.985e-03 3.742e-03 -0.530 0.5971
## temp:rad -2.507e-04 2.056e-04 -1.219 0.2256
## wind:rad -2.001e-03 1.339e-03 -1.494 0.1382
## temp:wind:rad 2.535e-05 1.805e-05 1.404 0.1634
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4877 on 100 degrees of freedom
## Multiple R-squared: 0.7116, Adjusted R-squared: 0.6827
## F-statistic: 24.67 on 10 and 100 DF, p-value: < 2.2e-16
lmoz08 <- lm(log(ozone) ~ temp + wind + rad +
I(temp^2)+ I(wind^2) + I(rad^2) +
temp:wind + temp:rad + wind:rad, data = ozo)
anova(lmoz07, lmoz08)
## Analysis of Variance Table
##
## Model 1: log(ozone) ~ temp + wind + rad + I(temp^2) + I(wind^2) + I(rad^2) +
## temp:wind + temp:rad + wind:rad + temp:wind:rad
## Model 2: log(ozone) ~ temp + wind + rad + I(temp^2) + I(wind^2) + I(rad^2) +
## temp:wind + temp:rad + wind:rad
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 100 23.787
## 2 101 24.256 -1 -0.46883 1.9709 0.1634
lmoz09 <- lm(log(ozone) ~ temp + wind + rad +
I(temp^2)+ I(wind^2) + I(rad^2) +
temp:wind + wind:rad, data = ozo)
anova(lmoz08, lmoz09)
## Analysis of Variance Table
##
## Model 1: log(ozone) ~ temp + wind + rad + I(temp^2) + I(wind^2) + I(rad^2) +
## temp:wind + temp:rad + wind:rad
## Model 2: log(ozone) ~ temp + wind + rad + I(temp^2) + I(wind^2) + I(rad^2) +
## temp:wind + wind:rad
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 101 24.256
## 2 102 24.281 -1 -0.02515 0.1047 0.7469
lmoz10 <- lm(log(ozone) ~ temp + wind + rad +
I(temp^2)+ I(wind^2) + I(rad^2) +
wind:rad, data = ozo)
anova(lmoz09, lmoz10)
## Analysis of Variance Table
##
## Model 1: log(ozone) ~ temp + wind + rad + I(temp^2) + I(wind^2) + I(rad^2) +
## temp:wind + wind:rad
## Model 2: log(ozone) ~ temp + wind + rad + I(temp^2) + I(wind^2) + I(rad^2) +
## wind:rad
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 102 24.281
## 2 103 24.401 -1 -0.11987 0.5035 0.4796
lmoz11 <- lm(log(ozone) ~ temp + wind + rad +
I(temp^2)+ I(wind^2) + I(rad^2), data = ozo)
anova(lmoz10, lmoz11)
## Analysis of Variance Table
##
## Model 1: log(ozone) ~ temp + wind + rad + I(temp^2) + I(wind^2) + I(rad^2) +
## wind:rad
## Model 2: log(ozone) ~ temp + wind + rad + I(temp^2) + I(wind^2) + I(rad^2)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 103 24.401
## 2 104 24.522 -1 -0.12081 0.51 0.4768
lmoz12 <- lm(log(ozone) ~ temp + wind + rad +
I(wind^2) + I(rad^2), data = ozo)
anova(lmoz11, lmoz12)
## Analysis of Variance Table
##
## Model 1: log(ozone) ~ temp + wind + rad + I(temp^2) + I(wind^2) + I(rad^2)
## Model 2: log(ozone) ~ temp + wind + rad + I(wind^2) + I(rad^2)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 104 24.522
## 2 105 24.707 -1 -0.18512 0.7851 0.3776
##
## Call:
## lm(formula = log(ozone) ~ temp + wind + rad + I(wind^2) + I(rad^2),
## data = ozo)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.85551 -0.25578 0.00248 0.31349 1.16251
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.724e-01 6.350e-01 1.216 0.226543
## temp 4.193e-02 6.237e-03 6.723 9.52e-10 ***
## wind -2.211e-01 5.874e-02 -3.765 0.000275 ***
## rad 7.466e-03 2.323e-03 3.215 0.001736 **
## I(wind^2) 7.390e-03 2.585e-03 2.859 0.005126 **
## I(rad^2) -1.470e-05 6.734e-06 -2.183 0.031246 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4851 on 105 degrees of freedom
## Multiple R-squared: 0.7004, Adjusted R-squared: 0.6861
## F-statistic: 49.1 on 5 and 105 DF, p-value: < 2.2e-16
## Analysis of Variance Table
##
## Model 1: log(ozone) ~ temp + wind + rad + I(wind^2) + I(rad^2)
## Model 2: log(ozone) ~ temp + wind + rad + I(wind^2)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 105 24.707
## 2 106 25.828 -1 -1.1216 4.7665 0.03125 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## lm(formula = log(ozone) ~ temp + wind + rad + I(wind^2) + I(rad^2),
## data = ozo)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.85551 -0.25578 0.00248 0.31349 1.16251
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.724e-01 6.350e-01 1.216 0.226543
## temp 4.193e-02 6.237e-03 6.723 9.52e-10 ***
## wind -2.211e-01 5.874e-02 -3.765 0.000275 ***
## rad 7.466e-03 2.323e-03 3.215 0.001736 **
## I(wind^2) 7.390e-03 2.585e-03 2.859 0.005126 **
## I(rad^2) -1.470e-05 6.734e-06 -2.183 0.031246 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4851 on 105 degrees of freedom
## Multiple R-squared: 0.7004, Adjusted R-squared: 0.6861
## F-statistic: 49.1 on 5 and 105 DF, p-value: < 2.2e-16
lmoz12a <- lm(log(ozone) ~ I(temp/100) + wind + rad +
I((wind/100)^2) + I(rad^2), data = ozo)
anova(lmoz12, lmoz12a)
## Analysis of Variance Table
##
## Model 1: log(ozone) ~ temp + wind + rad + I(wind^2) + I(rad^2)
## Model 2: log(ozone) ~ I(temp/100) + wind + rad + I((wind/100)^2) + I(rad^2)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 105 24.707
## 2 105 24.707 0 1.0658e-14
## (Intercept) temp wind rad I(wind^2)
## 7.723892e-01 4.193355e-02 -2.211428e-01 7.465764e-03 7.390204e-03
## I(rad^2)
## -1.470231e-05
## (Intercept) I(temp/100) wind rad
## 7.723892e-01 4.193355e+00 -2.211428e-01 7.465764e-03
## I((wind/100)^2) I(rad^2)
## 7.390204e+01 -1.470231e-05
##
## Call:
## lm(formula = log(ozone) ~ tempR + windR + radR + I(radR^2) +
## I(windR^2), data = ozo)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.85551 -0.25578 0.00248 0.31349 1.16251
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.44421 0.07836 43.951 < 2e-16 ***
## tempR 0.39963 0.05944 6.723 9.52e-10 ***
## windR -0.26425 0.05688 -4.646 9.86e-06 ***
## radR 0.18520 0.05268 3.516 0.000649 ***
## I(radR^2) -0.12216 0.05595 -2.183 0.031246 *
## I(windR^2) 0.09362 0.03274 2.859 0.005126 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4851 on 105 degrees of freedom
## Multiple R-squared: 0.7004, Adjusted R-squared: 0.6861
## F-statistic: 49.1 on 5 and 105 DF, p-value: < 2.2e-16